(x^2+12)=(6x+16)

Simple and best practice solution for (x^2+12)=(6x+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+12)=(6x+16) equation:



(x^2+12)=(6x+16)
We move all terms to the left:
(x^2+12)-((6x+16))=0
We get rid of parentheses
x^2-((6x+16))+12=0
We calculate terms in parentheses: -((6x+16)), so:
(6x+16)
We get rid of parentheses
6x+16
Back to the equation:
-(6x+16)
We get rid of parentheses
x^2-6x-16+12=0
We add all the numbers together, and all the variables
x^2-6x-4=0
a = 1; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·1·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{13}}{2*1}=\frac{6-2\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{13}}{2*1}=\frac{6+2\sqrt{13}}{2} $

See similar equations:

| 14,500+2,500t=33,500 | | -(x-15)=52 | | (x-4)(7-x)=5x*x*x | | (x-4)(7-x)=5x*x | | 31+2v=71 | | 25=5(u-2) | | (x-4)(7-x)=5x² | | 2(3-h)=-6=-5h | | 7(x-4)=6(2x+3) | | 7x(X-10)=140 | | 12=3(c+4) | | (x-4)(7-x)=5x2 | | 4y+3=-2y+-9 | | .7x+x=80 | | 1/6v+1=1/4v-1 | | 3x+124=29+6x | | x.x+8=-24 | | 7x+4(4x-3)=103 | | 2x+15=6x+43 | | 2x+14=13x-4 | | 10(x−5)=−80 | | 6=2n-8;6 | | 4.7x+6.6=8.1+4.2x | | n­-16=72 | | -5n-8(1+7n)=54 | | x.x-8=-24 | | 7x-27=8x-6 | | 24+3y+1=180 | | (6x+16)+(6x-2)=(14x-10) | | 7p+3=9 | | (17,000-14,500)t=33,000 | | n+3/4=7/8 |

Equations solver categories